Ada Pre and Post Conditions


Ada preconditions and post-conditions are implemented using aspect clauses. While aspect clauses can include many other terms used to specify program behavior, this posting will focus on preconditions and post-conditions.


A thorough discussion of preconditions and post-conditions can be found at http://www.ada-auth.org/standards/12rat/html/Rat12-2-3.html

Since its first official version in 1983 the Ada language has always allowed the programmer to define data types and subtypes with specific ranges. For example:

type Byte is range -2**7..2**7 – 1;         -- signed integer type
type Unsigned_Byte is mod 2**8;             -- modular type
type Normalized is digits 5 range 0.0..1.0; -- floating point type
type Money is digits 10 delta 0.01;         -- decimal fixed point type
subtype Uppers is Character range ‘A’..’Z’; -- character subtype
subtype Positive is Integer range 1..Integer’Last;
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

When a defined type or subtype is used as a function or procedure parameter that type or subtype acts as a pre-condition on the call of the function or procedure.

procedure Swap(Left, Right : in out Positive);

The procedure example above defines a procedure named  Swap. The procedure takes two parameters of the subtype Positive. Even though subtype Positive is a subtype of Integer and every instance of Positive is also an instance of Integer, not every instance of Integer is an instance of Positive.  The Integer type can represent values less than 1, while the subtype Positive cannot. The Ada compiler writes run-time checks to ensure that the values passed to Swap are integers within the range of subtype Positive, creating a precondition for the procedure that all values passed to it must be Integer values greater than 0.

This use of strong typing in parameter calls provides some very limited precondition capability. A more robust precondition capability combined with a post-condition capability was introduced in the Ada 2012 standard.

Preconditions provide a guarantee to the writer of the function or procedure that a condition will be true when the program is called. Post-conditions provide a guarantee to the caller of the function or procedure that a condition will be true when the function or procedure call returns.

The precondition becomes a contract between the caller and the called subprogram when the subprogram is called. The post-condition becomes a contract between the caller and the called subprogram when the called subprogram returns. These contracts are direct implementations of the requirements for the called subprogram.

Stack Example

The following example shows a stack implementation which includes definition of some preconditions and some post-conditions.

-----------------------------------------------------------------------
-- Package implementing a generic bounded stack
-----------------------------------------------------------------------
Generic

   type Element_Type is private;

   with function Image(E : Element_Type) return String;

package Bounded_Stack is

   type Stack(Size : Positive) is tagged private;

   function Is_Full(S : in Stack) return Boolean;

   function Is_Empty(S : in Stack) return Boolean;

   procedure Push(S : in out Stack; Item : in Element_Type) with
     Pre => not S.Is_Full,
     Post => not S.Is_Empty;

   procedure Pop(S : in out Stack; Item : out Element_Type) with
     Pre => not S.Is_Empty,
     Post => not S.Is_Full;

   procedure Display(S : in Stack);

private

   type Buf is array(Positive range <>) of Element_Type;

   type Stack(Size : Positive) is tagged record
      Stk   : Buf(1..Size);
      Top   : Positive := 1;
      Count : Natural := 0;
   end record;

end Bounded_Stack;

This package specification defines the public interface and the private data definitions for a generic bounded stack ADT.  A bounded stack is created with a fixed maximum size.

The procedure Push pushes an item onto the stack. The precondition for Push requires the Stack parameter S to not be full (not S.Is_Full). The post-condition requires that after the successful Push operation the stack will not be empty (not S.Is_Empty). The Pop procedure has inverse requirements. One can only Pop a value from the stack if the stack is not empty before the procedure Pop is called (not S.Is_Empty). After a successful Pop operation the stack will not be full (not S.Is_Full).

The precondition and the post-condition seem nice enough, but how do they help the programmer develop correct code? Let’s look first at the implementation of the subprograms for the generic bounded stack and then at the “main” procedure used to test this stack ADT.

with Ada.Text_IO; use Ada.Text_IO;

package body Bounded_Stack is

   -------------
   -- Is_Full --
   -------------

   function Is_Full (S : in Stack) return Boolean is
   begin
      return S.Count = S.Size;
   end Is_Full;

   --------------
   -- Is_Empty --
   --------------

   function Is_Empty (S : in Stack) return Boolean is
   begin
      return S.Count = 0;
   end Is_Empty;

   ----------
   -- Push --
   ----------

   procedure Push
     (S : in out Stack; Item : in Element_Type) is
   begin
      S.Stk(S.Top) := Item;
      S.Top := S.Top + 1;
      S.Count := S.Count + 1;
   end Push;

   ---------
   -- Pop --
   ---------

   procedure Pop
     (S : in out Stack; Item : out Element_Type) is
   begin
      S.Top := S.Top - 1;
      Item := S.Stk(S.Top);
      S.Count := S.Count - 1;
   end Pop;

   -------------
   -- Display --
   -------------

   procedure Display (S : in Stack) is
   begin
      if S.Is_Empty then
         Put_Line("Stack is empty.");
      else
         for index in reverse 1..S.Top - 1 loop
            Put_Line(Image(S.Stk(Index)));
         end loop;
      end if;
      New_Line;
   end Display;

end Bounded_Stack;

Now, let’s focus on the Push and Pop procedures, since their specifications include preconditions and post-conditions.

   ----------
   -- Push --
   ----------

   procedure Push
     (S : in out Stack; Item : in Element_Type) is
   begin
      S.Stk(S.Top) := Item;
      S.Top := S.Top + 1;
      S.Count := S.Count + 1;
   end Push;

   ---------
   -- Pop --
   ---------

   procedure Pop
     (S : in out Stack; Item : out Element_Type) is
   begin
      S.Top := S.Top - 1;
      Item := S.Stk(S.Top);
      S.Count := S.Count - 1;
   end Pop;

Since the precondition for Pop guarantees that the stack is not full when this procedure is called there is no need to check for a stack-full condition within the procedure. Similarly there is no need for the Pop procedure to check if the stack is empty. The precondition for Pop guarantees that the stack is not empty when Pop is successfully called.

The programmer can simply assume the preconditions are satisfied while writing the code for a subprogram with preconditions.

Now, let’s look at the “main” procedure used to test this ADT:

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with bounded_Stack;


procedure Main is
   type Options is (Push, Pop, Display, Quit);

   package Int_Stack is new bounded_Stack(Integer, Integer'Image);
   use Int_Stack;

   S : Stack(5);

   function Menu return Options is
      package Opts_Io is new Ada.Text_IO.Enumeration_IO(Options);
      use Opts_Io;
      Value : Options;
   begin
      Put_Line("-----------------------------------");
      Put_Line("    Push");
      Put_Line("    Pop");
      Put_Line("    Display");
      Put_Line("    Quit");
      Put_Line("-----------------------------------");
      Put_Line("Enter your choice");
      Get(Value);
      return Value;
   end Menu;

   Choice : Options;
   New_Value : Integer;
   Popped_Value : Integer;

begin
   loop
      Choice := Menu;
      case Choice is
         when Push =>
            Put("Enter the new value to push on the stack: ");
            Get(New_Value);
            S.Push(New_Value);
         when Pop =>
            S.Pop(Popped_Value);
            Put_Line("Popped " & Popped_VAlue'Image);
         when Display =>
            Put_Line("Stack contents:");
            S.Display;
         when Quit =>
            exit;
      end case;
   end loop;
end Main;

This test makes an instance of the Bounded_Stack package passing in the type Integer and the function Integer’Image. This creates a stack package containing Integer elements. The variable S is defined to be an instance of Stack from that package. This instance is set to contain a capacity of 5 elements.

S : Stack(5);

A function is defined to display and manipulate a text menu for interacting with the stack.  The function returns the value of type Options input by the user. The executable part of the Main procedure simply loops through calling the Menu function and handling the return value of that function until the Quit option is chosen.

The following output shows what happens when the first option chosen is to Pop a value from the stack. In this case the stack is still empty because no value has first been pushed onto the stack.

-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
Pop

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE : failed precondition from bounded_stack.ads:16 instantiated at main.adb:7
[2018-10-20 09:23:58] process exited with status 1, elapsed time: 06.38s

Notice that the program immediately terminated due to the exception SYSTEM.ASSERTIONS.ASSERT_FAILURE. Furthermore, the exception was raised because the precondition stated in the file bounded_stack.ads, line 16 was violated for the instance of Bounded_Stack instantiated at line 7 of the file main.adb.

Line 16 of bounded_stack.ads is the line containing the precondition for the Pop operation.
Now let’s look at the behavior of pushing too many items onto the stack:

-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
push
Enter the new value to push on the stack: 1
-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
push
Enter the new value to push on the stack: 2
-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
push
Enter the new value to push on the stack: 3
-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
push
Enter the new value to push on the stack: 4
-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
push
Enter the new value to push on the stack: 5
-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
display
Stack contents:
 5
 4
 3
 2
 1

-----------------------------------
    Push
    Pop
    Display
    Quit
-----------------------------------
Enter your choice
push
Enter the new value to push on the stack: 6


raised SYSTEM.ASSERTIONS.ASSERT_FAILURE : failed precondition from bounded_stack.ads:13 instantiated at main.adb:7
[2018-10-20 09:44:39] process exited with status 1, elapsed time: 38.56s

Again, the exception SYSTEM.ASSERTIONS.ASSERT_FAILURE was raised, this time the precondition for the Push operation was violated.

In both cases the program was terminated because the precondition for a procedure call was violated. The preconditions prevented buffer overflow errors while ensuring the requirements for the Push and Pop procedures.

Comments

Popular posts from this blog

Threads of Confusion

Comparing Ada and High Integrity C++

Ada vs C++ Bit-fields